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SUMMARY

A typical low-thrust Mars orbiter mission using the Snap-8 power-
generating system has been studied from a guidance viewpoint. The
mission trajectory was divided into the three characteristic phases,
namely, the outward escape spiral, the heliocentric transfer, and the
inward capture spiral. The sensitivity of the final trajectory state
(velocity, position, and mass) due to errors in the initial trajectory
state and to thrust-vector errors was determined for each phase of the
mission. The analysis and numerical solutions are based on the methods
of linear perturbations and adjoint functions.

During the escape-spiral phase, any of the following minimum errors,
if left uncorrected, is sufficient to cause the escape direction to be
180° out of phase: a O.l-percent error in either initial orbital alti-
tude or initial vehicle mass, a O.l-percent error in the thrust magnitude
acting over the entire trajectory, or a 2.8° error in the thrust angle
acting over the entire trajectory.

During the heliocentric transfer, final position and velocity errors
of the order of several hundred thousand kilometers and 10 meters per
second will result from either an escape-direction error of 1/29, a
thrust-magnitude error of 1 percent, or a thrust-angle error of 1/20.

During the capture-spiral phase, if the initial velocity vector were
in error by only 1 meter per second and 1 milliradian, and if the nominal
thrust program were followed exactly, the vehicle would spiral down into
the Martian surface.

In general, low-thrust trajectories are highly sensitive to errors.
Open-loop trajectory control is thus completely out of the question; that
is, repetitive trajectory determination and corrective guidance maneuvers
are required to ensure a successful mission.



INTRCDUCTION

In the past several years, theoretical and experimental analyses
have shown that electric rocket systems are practical and offer high
performance in advanced space missions. First-generation spacecraft
flights are scheduled to begin around 1965 with an ion engine powered
by the Snap-8 nuclear turboelectric system currently under development.
A feasible mission that has been proposed for the 60-kilowatt version
of Snap-8 is a scientifically instrumented Mars orbiter. Such a mission
would begin in a low-altitude Earth-satellite orbit and end in a similar
orbit about Mars. Since the vehicle would penetrate a large portion of
the near-Martian space as it slowly transverses the capture-spiral tra-
Jectory, an accurate survey of radiation and surface conditions may be
obtained and transmitted back to Earth.

The question of how accurately the vehicle can be guided to its
given target is of great consequence to the success of the mission. As
yet, little attention has been given to the problem of low-thrust guid-
ance in the presence of random or systematic perturbations arising from
such error sources as thrust-vector control, navigational measurements,
and an approximate system model. In s preliminary analysis of this
subject (ref. 1), linear perturbation theory and the method of adjoint
functions were used to derive the fundamental guidance equation for
low-thrust trajectories. This equation provides a means of studying
the effect of error perturbations and corrective guldance perturbations.
The specific problem treated in reference 1 is an error analysis of the
heliocentric-transfer trajectory between Earth and Mars covering a wide
range of propulsion characteristics and transfer times. This report is
an investigation of the guidance problem for a typical Mars orbiter
mission considering, in turn, the escape-spiral phase, the heliocentric-
transfer phase, and the capture-spiral phase. The purpose of this in-
vestigation is to determine the sensitivity of the final trajectory state
for each phase to initial trajectory state errors and thrust vector
errors. It should be emphasized that this study is a fixed-time anal-
ysisy that is, perturbations refer to the difference between the actual
and reference trajectories at a particular instant of time. The choice
of time as the independent variable is computationally convenient and
is a good criterion of comparison for the problem at hand.

SYMBOLS
a semimajor axis, m
c Jet velocity, m/sec

e eccentricity



F thrust force, newtons

£ function of thrust vector perturbations (eg. (19))
M gravitational constant of central attracting body, m3/sec2
m vehicle mass, kg

P semilatus rectum, m

r radial position, m

T apogee distance, m

rp perigee distance, m

t time, sec or days

u radial velocity, m/sec

v total velocity, m/sec

W matrix of weighting functions

W thrust-error weighting function

X general trajectory state variable

y general thrust-vector perturbation variable

B thrust angle, radians or deg

A( )  large variation from reference quantity ()

5( ) small variation from reference quantity ()

A matrix of sensitivity coefficients

N error sensitivity coefficient, variable in adjoint equations (8)
to (12)

) angular position, radians

w angular velccity, radians/sec

. scalar product of vectors



A

Subsecripts:
c beginning of coast period

des design thrust level

E Earth

f final value

ij general indexes

M Mars

n values at tpn - beginning of control interval
o initial value

Superscripts:

T transpose of matrix

! second~order perturbation
time derivative

vector

ANATYSIS
Vehicle and Mission Characteristics

In this report an investigation of the trajectory sensitivity and
control problem for a particular Earth-Mars instrumented space probe
utilizing the Snap-8 electric propulsion system is presented. Rather
than proceeding directly to the analysis, it is appropriate here to
present the propulsion characteristics of the vehicle that have been
assumed and to discuss briefly the mission and trajectory characteristics.

Vehicle-propulsion characteristics (unpublished NASA data). - The
Snap-8 vehicle will be placed into a nearly circular, low-altitude
satellite orbit utilizing & multistaged chemical booster. Typically,
an initial gross weight of 4080 kilograms (9000 1b) is placed in a
927-kilometer (500-naut.-mile) orbit. The design electric power and
specific powerplant mass are 60 kilowatts and 22.7 kilograms per kilo-
watt, respectively, and the resulting powerplant - initial-gross-weight




ratio is 1/5. With a propellant utilization of 90 percent and a power
efficiency of 76.2 percent assumed, a design specific impulse of 3600
seconds is obtained. The available thrust force is 2.32 newtons
(0.524 1b), and the propellant mass rate is 5.68 kilograms per day.

Mission characteristics. - The mission under consideration is a
415.4-day, one-way trip to Mars beginning in a 927-kilometer Earth-
satellite orbit and terminating in a similar satellite orbit gbout Mars.
Figure 1 is a schematic illustration of the overall interplanetary-
transfer maneuver. It is convenient to discuss the mission in terms of
three distinct phases, namely, the escape spiral, the heliocentric trans-
fer, and the capture spiral.

(1) During the first 139 days of the trip the vehicle increases its
energy relative to Earth according to a contimious-power tangential-
thrust program. Solar gravitational effects are neglected during this
phase.

(2) At the hyperbolic-escape condition, the gravitational effect of
the Barth is neglected, and the vehicle initiates a 223-day heliocentric
transfer employing an optimum constant-thrust progream. The power-coast-
power seguence is 27.7, 160, 35.3 days, respectively. The heliocentric-
transfer angle is 159°.

(3) At 362 days the vehicle is in the vicinity of Mars and initiates
the energy-decreasing capture spiral, again employing a continuous-power-
tangential-thrust program. After 53.4 days, the 927-kilometer satellite
orbit has been established. Solar gravitational effects are neglected
during this phase.

The overall trajectory has been pieced together from a series of
two-body solutions in order to simplify the analysis. This procedure
has been commonly used by investigators of the low-thrust interplanetary
mission. In most cases, the approach taken is to terminate the escape
spiral when parabolic escape energy has been attained. After this, the
vehicle is assumed to be moving in the Earth's orbit with Earth's orbital
velocity relative to the sun, and the Barth's gravitational effect is
then neglected. A similar procedure is used at Mars. Frequently, the
parabolic energy condition occurs at & position well within the planet's
sphere of influence. The essential difference in the approach taken in
this analysis is an extension of the escaepe- and capbure-spiral phases
past the parabolic energy condition. Transformation to or from the
heliocentric system is arbitrarily made at a point where the solar and
the planetary gravitational effects are approximately equal. The main
reason for extension of the spiral phases is that in the vicinity of
the hyperbolic escape or capture condition the motion of the vehicle is
approximately along the asymptote of a hyperbola, which is a useful
target criterion for guidance purposes.



Figure 2 describes the escape-spiral trajectory in detail, where
the last of 500 revolutions sbout Earth is plotted. Parabolic escape
energy is reached at a distance of sbout 100 Barth radii and at a time
of 125.5 days after launch. At a distance of 298 Earth radii, the escape
phase 1s terminated, and, at this point, the relative velocity of the
vehicle is 1577 meters per second. The direction of the velocity vector
was arbitrarily chosen to be parallel to Earth's velocity. The perpen-~
dicular distance from the center of the Earth to the hyperbolic asymptote
is referred to as the asymptotic displacement and, in this case, is

0.675%X10° meters.

As previously mentioned, the heliocentric-transfer trajectory is
of the optimum constant-thrust type; that is, the thrust program employed
was one that minimized the propellant expenditure subject to the follow-
ing constraints: (1) The thrust must be egual to its maximum design
value or equal to zero, and (2) the transfer is to take place in a spec-
ifled time, namely, 223 days. Details of the optimization procedure
are fully presented in reference 2.

A plot of the capture-spiral trajectory is shown in figure 3. Ini-
tially, the vehicle'’s relative position and velocity are 418 Mars radii
and 1454 meters per second, respectively. The direction of relative
velocity is parallel but opposite to Mars' orbital velocity. Thus, the
planet is catching up with the vehicle. The asymptote of the capture
hyperbola is displaced by 0.209x10° meters. With the use of reverse
tangential thrust, a 927-kilometer satellite orbit is achieved during

the 109th spiral turn.

Trajectory Sensitivity Analysis

The motion of the vehicle during each phase of the mission is de-
scribed by a set of nonlinear differential equations. Consider that a
solution of such a set corresponding to a specified thrust program and
satisfying prescribed boundary conditions has been cobtained and is
termed the reference solution. If the major assumption is made that
perturbations (e.g., guidance errors) are sufficiently small so that
the actual vehicle trajectory does not vary significantly from the
reference trajectory, it is possible to study these variations and the
required corrective maneuvers by linear perturbation techniques. The
perturbed differential equations of motion represent a linear system with
time-varying coefficients, which are determined from the known reference
trajectory. The general solution of the perturbed equations is best
facilitated by the method of adjoint functions as suggested in refer-
ence 3. Application of the adjoint method to various trajectory sensi-
tivity and control problems is found extensively throughout the litera-
ture, for example, references 1, 4, and 5.



Equations of motion. - During each phase of the mission, the vehicle
is assumed to travel in a vacuum under the influence of an inverse-square
central gravitational field in addition to its own thrust acceleration.

A two-dimensional geometry is used, and the vehicle motion is described
in a rotating pblar coordinate system centered at the appropriate central
body. With reference to figure 4, the differential equations of motion
o be satisfied along the flight path are given as

b= vl - M Foginp (1)
2 m

& = -2;w+—ll%cos[3 (2)
= (3)
P =w (&)
= - g (5)

Differentiation with respect to the independent variable time is denoted
by a superscribed dot. The state variables of interest are radial ve-
locity u, angular velocity , radial position r, angular position @,
and mass m. The propulsion or control variables are the thrust magnitude
F and the thrust angle B, which is measured with respect to the local
norizontal (circumferential) direction. The effective jet velocity ¢

is equal to the product of specific impulse and a conversion factor and

is considered constant in this analysis.

The fact that the angular position ¢ does not appear in the non-
linear equations of motion is very significant in that large variations
in ¢ may be admitted without invalidating the linear perturbation
analysis. The possibility of very large variations in this quantity,
relative to 2% radians, during the escape-spiral phase is evident, since
the vehicle makes several hundred revolutions around Earth in the process
of escaping.

Fundamental guidance equation. - The derivation of the linearized
equations of motion and their solution by adjoint methods are reported
in reference 1. The development needed for the present study is presented
in appendix A. In the following discussion, the symbol & is used to
represent small variations from reference quantities, that is, by def-
inition

ox(t) = x(t) - x*(t)



where x 1is any state or control variable, and the asterisk denotes
the reference value.

The fundamental guidance equation expresses the variation in state
variables at the final reference time tr 1n terms of the variation in
state variables at some time t along the path and in terms of the
integrated effect of thrust-vector variations during the interval
(t, t£). This equation is writben with the use of matrix notation for
conciseness, as

dus dult) o

Bwye sw(t) 5

dre| = Alt) Ior(t)| + W at (6)
B¢y 5p(t) 58

dmp om(t) t

where A is a 5 by 5 matrix of sensitivity coefficients and W ig a
S by 2 matrix of thrust sensitivity or weighting functions. By
definition

] [~ a —_ ] o T
D‘l M1 Mz - - Mg Wy W11 W12
] Aol -+ o« Ags : .
A=].1] = - W= =1- (7)
Nsf a1 Ass | 75| |¥s1 ¥sz

The clements Aij and w;. are determined from a set of adjoint dif-
ferential equations discusied in the next section.

The fundamental guidance equation has two basic interpretations.
First, the sensitivity of final conditions due to a variety of error
sources may be determined, and the analyst thereby provided with in-
formation regarding the navigational and control-accuracy requirements.
For example, if the final variations have some prescribed tolerance
level, (8F, 8B) may be regarded as constant bias or random variations
acting over the path, and their tolerance level may be computed. Also,
if at time t the variations Bu, Bw, and so forth are measured, the
uncertainty in these variations due to instrumentation errors causes
uncertainty in the knowledge of final conditions that may be determined
from equation {(6). Thus, something might be inferred sbout the measure-
ment accuracy reguirements. The second interpretation of the equation
has to do with the formulation of an active guldance technique. With
the assumption that corrective maneuvers are required to null some or
all final variations, which have been determined by measurements du(t),



sw(t), and so forth, the necessary corrective-thrust program is implic-
itly contained in the integral terms of equation (6). The form of

(8F, &B) will depend on the particular control criteria and constraints
imposed.

In this report the major concern in the evaluation of the effect of
errors in initial conditions and thrust vector on the final-state vari-
sbles, that is, the evaluation of the right side of equation (6) when
t = to. For example, if the error in radial velocity at tr 1is of

interest eguation (6) yields

Bup = (M10u + Apgbw + AT + A 409 + Apsdmltg

te
+ / (wllaF + wlzzse)dt

to

From the form of this eguation, the sensitivity coefficients may be
interpreted as partial derivatives; for example,

_ Sug
Mate) = 30

Also, if ®F and BB are constant along the path, the following partial
derivatives could be defined as

du te
£ = W dt
OF 11
tO
t
dup T
¥ / w1 4t
tO

The extension of these definitions to the remaining variasbles follows
directly.

Adjoint eguations. - The sensitivity coefficients Kij(t) are deter-

mined from the solution of the following adjoint differential equations
(see apperdix A):

Ai1 = (%0) Az - M3 (8)
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7\12 = - (21‘0.))7\:11 + (2%)7\12 - 7\14 (9)
. 2GM 2cuw F cos B
Aiz = - (;3;‘*‘0ﬁ>)11 - <r2 T e ‘)Kiz (10)
Mg = 0 (11)
s _ (F sin B F cos B\-.
Ns = (_:;?_—>xil + (‘j;;;—>K12 (12)

The time-varying coefficients in parenthesis are known from the particular
reéference trajectory of interest. These equations were integrated
backward in time from tg. The initial conditions specified at ty have
the form

Ai(te) = 1 xij(tf) =0 341
that is,
Alte) = I(unit matrix) (13)

The sensitivity coefficients and B are continuous functions of
time even if a discontinuity in F is admitted, as it is during nominal
coasting periods (see ref. 2). From equations (11) and (12) it is noted
that A4 1s a constant and that A5 1s constant during coasting
periods (F = 0). When boundary conditions are specified as in equa-
tion (13), the fourth column and the fifth row of the matrix A are
time inveriant and may be given directly without numerical integration:

(M4> N2as Azas Mg, Asq) = (0,0,0,1,0)

(14)
MNs15 252, Ms3, Asa, Ass) = (0,0,0,0,1)
The elements of the matrix W are, from appendix A,
As A As
il . 12 iS5
Lo = e + = - ==
Wil w sin B+ ——= cos B - (15)

A
Wip = %(xil cos B - —%E sinﬁg (16)
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On substitution from the second of equations (14), we, end Wg, sim-
plify to

=0 (17)

The thrust-angle weighting function Vio is continuous only during the

nominal powered periods and is zero during the nominal coast period

(F = 0). A discontinuity exists at the initiation and the termination
of the coast period. This result is as it should be, since thrust-angle
variations have no physical meaning when thrust is shut off.

Nonlinear thrust-vector perturbations. - In the derivation of the
fundamental guidance equation (eq. (6)), it is assumed herein that thrust-
vector perturbations are sufficiently small so that only first-order or
linear variations need be considered. If, however, large variations in
thrust magnitude or direction are allowed, the linear form of the inte-
grand in equation (6) must be modified; that is,

SF
W - [£;(aF, A8) ] i=1,. . «,5
58

where AF and A8 may be considered large variations. The need for
such modification arises when consideration is made of the problem of
guidance maneuvers (corrective thrust programs). For example, if the
guidance maneuver reguires that thrust be cut off for a specified time
during the nominal powered period or that thrust be turned on during

a nominal coast period, than AF = ¥F, which is certainly not small.
Another reason for deriving the exact f3 functions is that a check on
the conclusions drawn from the linear-sensitivity analysis is available
when the first-order sensitivities appear to be negligible.

The perturbation analysis (see appendix A) involves two essentially
unrelated types of linearization, that is, linearization of the state
variables and linearization of the control variables. This separation
is evident in the results of equation (6). The validity of the trajectory
perturbation solution, however, depends only on the validity of the
linearization of state variables. Note that the adjoint solution Alt)
is independent of control-variable linearizations. Consequently, as
long as large thrust-vector perturbations do not result in large trajec-
tory perturbations, it is necessary to modify only the integrand terms
in equation (6). From appendix A the result is

tr
5x(te) = A(t)Dx(t) +/ [£3]at (18)
t
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where

As
£y = —;—l [(F + AF)sin(B + AB) - F sin B]

. Ao ((F + N5
e AF)cos(B + AB) - F cos B] - — [(F + AF) - F]

After expansion of the trigonometric functions and with the use of
equations (15) and (16), the alternative form is

Az ‘W Az
£ = Gil + ——?)AF cos A + (—;,—2>AF sin AB - (%5)/_\1*"
N A5 .
Flw;q + — (cos AB - 1) + (wip)sin AB (19)

When AF and AR are smell, AF =~ OF, sin AB =~ 5B, and cos AR =~ 1.
Equation (19) thus degenerates into the approximate linear form derived
previously:

fi = wilBF + wiZBB

In the previous section it is noted that wjp is discontinuous

at the beginning and at the end of a coast period (F = 0) and is zero
during this period. The gquantity wig/F, which appears in equation (19),
however, is always continuous and, in general, is nonzero, as can be
seen from equation (16).

Several special cases of equation (19), used later in this report
are as follows:

F=0; 4F = Fieg? OB arbitrary

s W A5
fi = Faeg 'i(Wil + %5>cos A3+ (%)sin OB - (-?)} (20)

A3 = 03 AF  arbitrary

fy = w1 AF (21)

F = Fieg; &F = 8F << F; AB = ®p, small but second-order effects
1
significant; sin AB =~ 8B; cos AB - 1 = -~ s 562
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F A
des id5
£; = wi1BF + wizdB - —z——(wil + —0—>652 (22)

RESULTS AND DISCUSSION

The overall low-thrust trajectory for the 415.4-day Mars orbiter
mission has been pieced together from a series of two-body solutions.
The equations needed to calculate the reference trajectories were pro-
grammed for an IBM 704 digital computer. Numerical integration was
performed by the Runge-Kutta technique with an automatic step-size con-
trol to limit truncation error. The computer program was developed for
the study presented in reference 2, and only minor modifications were
required to adapt it to this investigation. Basically, this modification
involved increasing the integration loop by the addition of the adjoint
equations (8) to (12).

In the following sections, each phase of the mission is considered
separately, and the results show the sensitivity of the final trajectory
state due to errors in the initial trajectory state and thrust-magnitude
and -direction errors. Two examples of simple corrective guidance are
presented.

Trajectory Sensitivity - Escape-Spiral Phase

Reference trajectory. - Characteristic parameters of the escape-
spiral trajectory are given in figure 5. The thrust angle 3, which
corresponds to the tangential-thrust program, is plotted in figure 5(a).
Thrust direction is seen to be within 2° of the horizontal throughout
the first 100 days, and thus a circumferential-thrust program would
result in approximately the same trajectory up to this point as the
tangential program. Aside from the fact that tangential thrust is very
efficient in terms of propellant expenditure, trajectory control is
enhanced, since the local vertical (local horizontal) may be easily
sensed. Past the knee of the curve, B increases at an average of
about 3° per day.

Radial velocity is shown as a function of time in figure 5(b), and
the similarity to the thrust-angle program is noted. The vehicle's orbit
is essentially circular up to 100 days at which point the eccentricity
is only 0.028. A characteristic of the function u(t), which is entirely
masked out in figure 5(b), is its oscillatory nature over the flat region
of the curve. A close examination of the digital-computer results, in
a region where cutput is called for at every integrating step, shows that
u oscillates with an increasing period and decreasing amplitude as time
increases. The period is approximately equal to the orbital period
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during a given revolution. Initially, the amplitude of oscillation is
of the order of several meters per second. At + = 25 days, the ampli-
tude has decayed to a small fraction of 1 meter per second. A corre-
sponding oscillation is also exhibited by the thrust angle and the
eccentricity.

The angular velocity w decreases with time by almost four decades,
as shown by figure 5(c). An approximation of the average orbital period
may be made at any time by Zﬂ/w. For example, at t = 15 days 1 rev-
olution is made in about 0.1 day, while at t = 82 days one revolution
requires about 1 day. Figures 5(d) and (e) show the time histories of
radial and angular positions, respectively.

Initial-condition variations. - With reference to equation (6), the
effect of errors in velocity, position, and mass at t = to = O on these

same quantities at +tf = 139 days is given by A(to). The elements of

this matrix have been obtained from the adjoint-equation solution and
are given as

Bdug Bwg Brg BP0 dmg
dup | 7.39x107% | 7.20x108 | 1.smx107% | o ~2.13
dwr | 5.69x1071° | _2.01x1073 | -5.43x10713| 0 | s5.19x10-10
A(te) = dre | 1.51X102 1.44x10135 | 4.00x103 0 | -3.80x106
dpr | -4.41x107% | -1.23x107 | -3.41x10°3 | 1 0.768
Bmp 0 0 0 0 1
(23)

in the initial-circular-orbit
104 meters. Assume also that

Consider, for example, a variation
altitude of" 10 kilometers, that is, drp =

Bugy = 89, = Bmp = 0. Since
GMg
w = e
e} T g
the variation in wp is
GM
dwg = - S [FE dro = = 3 %o drg = - 2.08x10"6 radian/sec
2 rg 2 rq
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From the second and third columns of A(to) the following are obtained:
dur = 5.00 m/sec
dwe = -1.25x10-2 radian/sec
rp = 1.00x107 m
5pp = -8.49 = -2.21 radians = -127°

The final errors oduf, dwr, and dry are each of the order of 1/2 percent.
If there were no error in the angular position, a transformation to
heliocentric coordinates would show an extremely small perturbation on
the initial heliocentric conditlons. This is not the case, however,

since @p 1s the parameter that is related to a heliocentric reference

direction and is in error by -127°. The perturbed escape trajectory

may be visualized by a 127° clockwise rotation of the reference trajectory
in figure 2. Qualitatively, the result is a very significant error in
heliocentric coordinates.

The preceding example has served to focus attention on the extreme
sensitivity of final angular position relative to the sensitivity of the
other state varisbles. There 1is, however, an essential difference in
the nature of the sensitivities. That is, the magnitudes of duf, oW,

and Bre increase proportionally with initial-condition errors, whereas
the principal magnitude of BPe varies between O and =n 1in & cyclical,

triangular fashion. As an example, consider each initial-condition
error independently and compute the error magnitudes that cause O@r to

be = radians out of phase. From the fourth row of the matrix A(to)

if Bpp = * (2n + 1)n, where n =0, 1, 2, « « «
5¢
Bug = £ c= % (en+ 1)(7.10x103) m/sec
4.41x107
o)
Bu, = F A 5= F (2n + 1)(2.55%x10"7) radian/sec
1.23X10
59
Bry = ¥ £ — =% (an+ 1)(9.21%10%) m
3.41X10
59
8po = * —ii = % (2n + 1)n radians
59
Bmg = * e = * (2n + 1)(4.09) kg




The minimum errors are found when n = O. From the previous results,
it may be concluded that dup 1is several orders of magnitude greater
than any reasonable error that may be expected. In contrast, a 0.04-
percent error in wgy or a O.l-percent error in either the initial orbital

altitude or my is sufficient, if left uncorrected, to reverse the 4i-
rection of the escape asymptote.

Thrust-vector variations. - Consider next the sensitivity of velocity
and position components at the nominal escape condition to variations
in thrust magnitude and direction. This information is expressed by the
integral terms in equation (6), where the elements of the weighting
matrix W are given by equations (15) and (16) and are plotted against
time in figure 6. ERach welghting function, except W41 €xhibits an

oscillatory characteristic the amplitude and period of which increase
with time. As in the case of the radial-velocity characteristic, the
period of oscillation approximately coincides with the orbit rotational
period of the vehicle. 1In figure 8, only the last cycle of the weighting
functions is shown; however, the envelope of oscillation is plotted.

Qualitatively, the welghting functions illustrate the relative sen-
sitivity to thrust-vector errors during any two arbitrary time intervals.
Figures 6(b), (d), (f), and (h) show that final velocity and position
components are relatively insensitive to first-order thrust-angle errors
during the first half of the escape phase, whereas figures 6(a), (c), and
(e) show a significant and essentially constant sensitivity to thrust-
magnitude errors during this same interval. In particular, figure 6(g)
illustrates a result that could easily have been predicted, namely, that
Py 1s most sensitive to &F occurring during the early tightly wound

spirals and that the sensitivity is essentially zero during the last
spiral turn (t > 120 days).

A convenient quantitative measure of the sensitivity to thrust errors
is obtained by considering OBF and 8B to be constant; thus, the time
integrals of the weighting functions yield the desired sensitivity. The
results are presented in the following matrix form, where BF and op
are measured in newtons and radians, respectively:

OF op

dur | 3.73xX105 | 11.7

te Bp | ~9.11X1077 |-2.77x10~7
wis dtl = (24)
T

i or,, 6.68%10Y | 7.32x107
@]

8¢, [-1.35X10° | -2.92
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Consider the effects of a thrust-magnitude error first. Since an
appreciation for the serious consequences of a large error in @ has

been gained, the sequence of dF values, which causes @f to be =«

radians out of phase, are computed. From equation (24)

=+ (2n + 1)(2.33x107°) newton n=0,L,2,. .

The minimum value of &F required is thus 2.33x10-2 newton, or a 0.1l-
percent error. Since 1t is unlikely that such accurate thrust control
is possible, it must be concluded that the reguirement of guided flight
is of major importance for low-thrust missions.

The effects of a *O.l-percent error in F on the velocity and
radial-position components at tp are

dup = * (3.73x109)(2.33x1073) = +8.70 m/sec
Bwp = = (-9.11x1077)(2.33x1073) = 72.12x1079 radian/sec
Bro = * (6.68x10%)(2.33%1073) = +1.56x107 m

Fach of these final variations when divided by its respective reference
quantity represents an error of less than 1 percent; therefore, the
resultant perturbation on the heliocentric trajectory is due almost
entirely to BQe = T.

For discussion of the effects of a thrust-angle error, an €rror
of *10 milliradians, or about 1/20, is assumed as a typical order of

magnitude. The final velocity and position errors that result are then
given by equation (24) as

dus = *0.117 m/sec
g = $2.77x10Y radien/sec
Bre = £7.32X10° m
Bpe = ¥0.0292 radian = F1.67°
which are all first-order effects. The error magnitudes due to the first-
order variation of B appear to be quite small; however, before a con-

clusion can be drawn the effects of second-order variations of B must
be computed. From equation (22},
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tr
F A
des 5
Bxi(tg) = 8x;5(tp) due to 5% = - == gp? @il + ‘%ﬁ)dt

To

In this study, Fdes/2 is of the order of unity. Also, computer results
show that XiS/c is small compared with ws1 for all values of 1.

Thus, the second-order effects are very well approximated by the integrals
of w;q, which are given in the first column of the matrix equation (24),

multiplied by &p% = 10-4:

dul = -0.373 m/sec

8w£ = 9.11x10-11 radian/sec

orl = -6.68X10° m
8. = 0.135 radian = 7.740

A comparison of the first- and second-order effects shows that second-
order effects are of the same magnitude or greater except in the case

of angular-velocity errors. The total errors in velocity and radial-

position components are quite small. The total angular-position error
is less than 10°. If, however, 58 were increased to 2.89, the final

angular-position error would increase to about 180°.

Trajectory Sensitivity - Heliocentric-Transfer Phase

Reference trajectory. - The time required to transfer between plan-
etary orbits was chosen as 223 days, and the trajectory was optimized
to minimize the propellant expenditure. The constraint imposed here
was that the thrust must be equal either to the design value or to zero.
Characteristic variables of the reference trajectory are plotted in fig-
ure 7 where the time scale chosen has been reinitialized to zero. The
optimum-thrust-angle program is shown in figure 7(a). Thrust direction
is outward with an average rate of change of 0.86° per day during the
first powered period and inward with an average rate of change of 0.56°
per day during the second powered period. Velocity and position time
histories are shown in figures 7(b) to (e).

Initial-condition variations. - Digital-computer solutions of the
adjoint equations (8) to (12), which correspond to the boundary conditions
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A(te) = unit matrix, are plotted as functions of time in figure 8. The
effects of initial-condition variations on final conditions are given
by A(to):

Bug Bwpo dro 590 OMo
Bup | -0.366 2.63x10M | 6.46¢0077 | © ~0.149
dwp |-1.84x10712 -3.48 -8.07X10-18| 0 8.07x10-12
Alty) = dre | 2.20x10° 4.57x10%8 10.9 o |-1.z7x10’

B¢, -1.02x10~% | -3.11x107 | -8.44x10-11| 1 1.00x10"%

Bme 0 0 0 0 1

(25)

Variations in initial velocity, position, and mass will be due to errors
incurred during the escape-spiral phase. Expressions are derived in
appendix B that relate the two sets of errors. Suppose, for example,

at the termination of the escape phase that the angular position is in
error by only 10 milliradians, while all other errors are zero. With
the use of equations (B6), (B7), (Bl2), and (Bl4), the initial-
heliocentric-velocity and -position errors are found to be

Bup = -15.8 m/sec

-11

B = 2.47X10 radian/sec

dr, = -1.78x107 m

B, = 4.50x107° radian

dmg = O
Then from equation (25) the final-condition errors will be
dup = 0.770 n/sec

-11

BdWwe = 8.69X10 radian/sec

drp = -1.16x10% m
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Bpp = 2.39X107° radian; rd@e = 5.43x10° m

dme = O

With reference to figure 3, the resultant errors show that at the nominal
final time the vehicle is both below and ashead of its nominal position,
and 1ts motion relative to Mars is essentially parallel to the nominal
capture trajectory. Hence, the incoming asymptotic displacement is in

. S . . .
crror vy some 1.16X10% meters. The requirement for midecourse corrective
guidance to compensate for the escape errors ig evident.

Thrust-vector variations. - The elements of the matrix W are
plotted as functions of time in figure 9. Recall that the nominsal coast-
ing period extends over the interval 27.7 <t < 187.7

<t < { days. Since 1t

18 reasonable to assume that no thrust errors will occur during this
interval, the weighting functions are of interest here only during the
nominal powered periods. The significant result illustrated by figure @
i5 that the final velocity and position components are relatively more
sengitive Lo thrust-vector errors that occur during the first powered
period. In particular, the radial-position verturbation due to either

8F or BB 1is relatively 15 times greater during the first powered
period, while the angular-position perturbation due to BF is relatively
25 times greater.

The time integrals of the weighting functions over the powered
regions of flight have been evaluated as

5F 5P
Sugp 211 -604 o
dwp |-1.14x1078 | 2.45x10-8
Jé:wered RS 5rp | 1.80x10%0 | -2.15%1010 (20)
pertods S0p -0.142 0.0384

As an example, the velocity and position perturbations resulting from a
l-percent error in thrust magnitude or a 10-milliradian error in thrust
angle are
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5F = 2.32X107% newton 58 = 1072 radian

Bup = 4.90 n/sec Bup = -6.04 m/sec

dwp = -2.64x10710 radian/sec Bwp = 2.45x10710 radian/sec
dry = 4.17X10% m Bre = -2.15x10% m

Bpp = -3.29X107° radian B¢y = 0.384X107° radian

The resultant errors and, in particular, the position errors are
of sufficient magnitude to require midcourse guldance corrections.

Trajectory Sensitivity - Capture-Spiral Phase

Reference trajectory. - Variables that describe the capture-spiral
trajectory are plotted as a function of time in figure 10. The thrust
angle B, corresponding to the energy-decreasing tangential -thrust
program, is shown in figure 10(a) in which ( 1is shown as a second
guadrant angle, since the thrust vector in this case is parallel butb
opposite to velocity vector. As in the case of the escape-spiral
srajectory, the thrust direction is essentially circumferential over a
large region. In this region, t > 25 days, the vehicle travels in a
nearly circular orbit with a decreasing semimajor axis. These results
may readily be inferred from the radial-velocity and -position curves
shown in figures 10(b) and (d). Again, as in the case of the escape
spiral, a characteristic of the function u(t), which is entirely masked
out in figure 10(b), is its oscillatory nature over the flat region of
the curve. The period and amplitude of oscillation decrease and increase,
respectively, with time, although the largest amplitude is quite small.

Variational parameters of final satellite orbit. - It may be more
illuminating to consider the sensitivity of the final satellite orbit
about Mars in terms of orbital parameters such as semilatus rectum D,
semimajor axis a, eccentricity e, perigee Ty, OT apogee Tg- If the

orbitel orientation is not of interest, any two of these parameters will
define the orbit. The parameters ap and pp may be expressed in

terms of the radial-position and -velocity components as

_ 1
of = 2 2
o ug + (rpop)

Tp GMy




2z

4 2
De = Trer
£ Gy

The eccentricity, perigee, and apogee are given as

P
e2 =1 ~ —2

ap

il

af(l - ef)

2]
I

a,f = af(l + ef)

When the reference orbit is circular, the following special relations
occur:

Expansion of ap and pe 1in a Taylor series keeping only first- and

second-order terms and utilization of the previous special relations
yields

ar by or
_(2Fr £} 2 f\. 2 . 15\ 2 , (20
bap = ((l)f }“’f + drp + <V%>uf * (: Z >5<Df * (rf>5rf * (mf pwdry

(27)

r T :
iy i) 2 6 2 8
VAN = | ——=10Ws + 49 + [ —= + [ = + =

Variations in eccentricity, perigee, and apogee may then be calculated
from

o Dap - Ope

I Y (29)
Arp,f = Aaf - (I'f Aef + Aaf Aef) (30)



Note that, even for very small variations in velocity and position
tions {29) to (
these variations.
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31) are essentially nonlinear when expressed in terms of

orbit is circular.

Tnitial-condition variations. - Solution of the adjo

for the capture-spiral trajectory yields the following A

6u.f

dlp

dmp

This result is due to the fact that the final reference

int equations
(to) matrix:

Bdup Bg Bdro BPo Bmo
~24.2 g.67x10 L | 5.37x107° | © 7.16
2.02x10°% | 2.01x10° | -1.10x10-10| o | 4.87x107°
5.73x10° | -5.77x10L% | 0.311 0 | -1.39x10°
_______________________________ 1 | mmemm e
0 0 0 0 1

(z2)

The magnitudes of the sensitivity coefficients in equation (32) indicate
the extreme sensitivity of the capture trajectory to errors in initial

conditions.

the velocity components are in error by Bug =1
-10-9 radian per second.

By, =

A sample calculation illustrates this point.
situation where the vehicle is at the influence sphere (Sro

vector having an error of about 1 meter per second in m

milliradian in

direction.

Assume also that ©dmy = o.

the final variables will be in error by

swp = -2.02x10-4 - 2.01x10-%

dup = -24.2 - 997

= -991 m/sec

Consider a
= 0), but

meter per second and
This corresponds to the initial velocity

agnitude and 1
From equation (32),

-4.03x10~4 radian/sec

Br, = 5.73x105 + 5.77X10° = 1.15X106 m = 1150 km

These errors represent a significant perturbation of the trajectory.
Evaluation of equations (27) to (30) shows the eccentricity to be about

0.5 and the perig

ee to be well within the Martian surface.
the errors are large enough to invalidate the lin

Actually,

ear perturbation approach.

An interesting result may be found from the matrix Altg) if in
any given column the element of the second row is divided by the element

, equa-



of the third row. These ratiocs urc very nearly ihe same, about
~2.5x10710,  Yithin the validity of the first-order approximation, this
result means that  Bwpe  is not independent of dry; that is, no matter
whal sel,off inlitiel errors leads Lo a given Orp, Duwp = -5.5%x10710 Ore
This common ratio is not unique to the time to = 0, since an examination
of' the matrix Alt) shows approxinmately the same result over a large
cortion of the trajectory.

A further result is that the gquantity Emf/rf is equal to
3.54X10'1O; thus, dwy =~ —(BQT/ff)Srf- This result ig not explained in a
rigorous manncr; however, & relation of this form and order of magni tude
may be deduced from the following argument. TIf the errors 8uf, By,
and drp are guite small, the final perturbed orbit is very nearly

circular. Since for a circular orbit
1/2
GMM /
Wep = —
T 3
f

the relation between Bwe and dry required to maintain a circular

orbit of slightly different size is

W
r_f brf
£

[Ze1 SN

6U~)f: -

The to-percent discrepancy in the coefficient ore may be ascribed to
the fact that the final perturbed orbit is not exactly circular.

Thrust-vector variations. - The sensitivities of final-velocity
and -radial-position components to variations in thrust magnitude and
direction are given by the welghting functions, which are plotted in
figure 11. As in the case of the escape-spiral phase, the functions
exhibit an oscillatory characteristic, the envelope of which is shown.
The major gualitative result to be gained from figure 11 is one that
may have been anticipated: the maximum sensitivity to thrust errors
occurs in the vicinity of to when the vehicle is far from the planet

and moving asymptotically, and the sensitivity decreases to a negligible
amount as the final satellite orbit is approached. The guidance impli-
cations are clearly understood. Trajectory perturbations due to initial-
condition errors are most efficiently corrected early in the capture
phase, provided, of course, that accurate guidance information is
available to the vehicle at such large distances from the target planet.



A quantitative measure of the sensitivity to thrust variations is
provided by the time integrals of the welghting tunctions:

BF 5B
c Bils ~.05X107 -5.4@@057|
wigduf = eep —oivXLg:Z -7 .62%107¢ (33)
‘o bre _1"(”[%“08 2.23x10"

A simple ralculation shows that a significant perturbation of the final
sateilile orbit results from thrust errors as small as 0.1 percent in
magnitude and 1 miliiradian in direction. For ©BF = Z.BEX;O'Q, the
final-velocity and -position errors are -20.70 meters per second,
- - L . -

-1.43X10 4 radian per second, and 1.05X10" meters, respectively. For

B - . — - e = -
53 = 10 5, the final errors are =544 melers per second, ~0.783X107= ra-

|

dian per second, and 2. 23%X10° meters, respecbively. In the last casc
she eccertricity of the perturbed orbit is about 0.1, and the perigec
altitude has been decreased from the nominal v2d Lo 230 kilometers.

For reszsons previously discussed, the second-order cffects of
thrust-angle variations may be approximared by the product of 6&5 and
the integrals of wyy given in the firsl column of equation (33).

Since the integrals of wiy are of smaller magnitude than the integrals

of w; the second order effects are negligible for §B < 0.1 radian.

“ig?
Note from equation (33) that the ratlos of the elcments taken from

L

the second and third rows are both egqual to —S.SIXIO'lO. Thus, from the
arguments of the previous section dwp = -(2wp/rplore for any small

values of constant ©F and oB.

Examples of Simple Guidance

Becape guidance in one varigble. - The basic result of the sensitiv-
ity analysis of the escape-spiral trajectory is that a very small pertur-
pation in thrust megnitude is sufficient to rotate the asymptotic escapc
direction through a large angle. Specifically, if a 0.l-percent systen-
atic error exists and no corrective maneuver is made, the escapc
asymptote will lie on the sun's side of the Esrth's orbit and will be
directed opposite to Barth's orbital velocity. This condition is
equivalent to a 25-percent loss in heliocentric energy, which would most
likely result in a mission failure. The objective of escape guidance
is to prevent such a condition from occurring.




As an example, consider a simple guidance scheme that employs
constant thrust AF as the control variable and a single-variable guid-
ance criterion, namely, to null &pp. A constant-thrust-magnitude error

(unknown to the vehicle) of 0.1 percent is arbitrarily assumed as the
uncontrolled perturbing function, and repetitive corrective action is to
be taken at 20-day intervals based on perfect trajectory determination.
The calculation is simplified by restricting the control interval At

to within 1 day, where the thrust weighting functions are essentially
constant over this intervel. The details of the thrust-control system
are left unspecified, and results are given in the form of thrust
impulse AF At measured in newton-seconds. Depending on the control
required, then, consideration may be given to the possibilities of throt-
tling the low-thrust engine, shutting it off completely, or using a
medium-thrust chemical rocket.

The guidance equation involving angular position only may be ex-
tracted from equation (6). At the beginning of any control interval
tn the final-angular-position error predicted from measurements is

denoted as B®@p(t,). The result of equation (21) is substituted for

the integrand term in equation (6); hence, the guidance equation may be
written as

ttit,
Ape(ty + Aty) = App(ty) + / wa1AFy dt
t

n
= A‘Pf(tn) + W4l(tn)AFn Aty

Since (t, +At,) = O 1is desired, the control thrust impulse is
f\n n

AF £09p(ty)
n & = - w4_lztnj

If corrective action were taken at the previous control instant tn.1 to
null App, Ape(ty,) is due to the perturbing function &F acting over
the interval (tn_l, tn). For the purpose of the calculation herein,
tn
BF Wy 4t
tn-1
wa(ty)

AFn Atn = =-

Figure 12(a) illustrates the results of this simple-final-value
guidance scheme. A constant-thrust perturbation &F = 2.32x10-3 newton
(0.1 percent) and five control intervals at 20, 40, 60, 80, and 100 days
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are assured. The uncorrected Ay characteristic is shown for compar-

ison. Although the last corrective action was taken at 100 days, the
angular-position error increases to an acceptable final value of less

than 1° during the interval 100 to 139 days. ©Since a positive pertur-
bation was assumed, the control impulse must be negative to make up for
the lag in angular position. This impulse increases in magnitude

slightly with each successive correction from 5.08x10° to 8.34X10° newton-
seconds. Consider the correction at t = 20 days. If the low-thrust
engine is shut off completely (AF = -2.32), the shutoff time At is
2.18X10% seconds, or sbout 0.6 hour. If the engine is throttled down

by 5 percent, the control interval is about 12 hours.

The effect of the guidance maneuvers on the uncontrolled final
varisbles Bup, dwe, and Bre is shown in figures 12(p) to (d). Control

stability results in each case, and a comparison with the uncorrected
characteristics shows a significant reduction in the final errors.

Midcourse guidance in two variables. - As a second example of how
the fundemental guidance equation may be used to prescribe corrective
maneuvers, guidance action taken during the nominal coast period of the
heliocentric-transfer phase is considered. The coast period begins
27.7 days after heliocentric injection, and this time instant is denoted
te. If the powered period is extended over the interval (te, te + At),
where At is arbitrary but less than several days, and if the thrust-
angle correction AB 1is constant during this interval, any two of the
final-velocity and -position error components may be nulled. The
position errors were chosen to be nulled.

The guidance equations involving position errors only are taken
from equation (6) and are written as

totAt
Srf(tc) +/ £z 4t
t

c

toHAL
Bpe(ty) + / £, 4t
t

o}

I

Srf(tc + At)

8pp(t, + At)

I

where 8re(t,) and 5ps(t.) are the final-position errors predicted at
time tc from navigational measurements, and the integrands f3 and
f, are given by equation (20). For the purpose of calculation, the
integrands msy be approximated by dropping the terms %i5/c, since
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dup(ts) = 0.240 m/sec

dwp(t,) = -1.58x10710 radia

sin AP

A
A

L s positive The
-velocity errors may be

Nt e 5in AB

Woo
~ oo™ e .
FAYCI sin AB
errors determined at time
errors and to a constant

acting over the interval
errors from the provious

¢ crrors with the use of
from the results of the

n/sec



29

@

dre(te) = 2.08X10% m
sps(te) = -3.03X107° radian
The midcourse corrective maneuver requires that
AR = 3.91 radians = 224°
At = 5.66x10% sec = 0.656 day

The actusl thrust direction is found by adding AB to the reference
thrust direction at t. (see fig. 7(a)); herce,

B = 0.850 + 3.91 = 4.76 radians = 2730

The mass loss due to the corrective maneuver is

il

Am o= m At

(-5.88 kg/day)(0.656 day)

il

-3.73 kg
The final-velocity errors after the correction become
dup(te + At) = 9.83 m/sec

swe(te + At) = 2.25x107H radian/sec

CONCLUDING REMARKS

A typical low-thrust Mars orbiter mission using the Snap-8 power-
generating system is studied from a guidance viewpoint. The mission
trajectory is divided into the three charscteristic phases, namely, the
outward escape spiral, the heliocentric transfer, and the inward capture
spiral. For each trajectory phase, the sensitivity of the final trajec-
tory state (velocity, position, and mass) due to errors in the initial
trajectory state and to thrust-vector errors ig determined. This infor-
mation is expressed by the fundamental guidance equation, the derivation
and solubion of which is based on linear perturbation theory and the
method of adjoint functions. In addition to providing a means of inves-
tigating the perturbative effect due to a number of error sources, wnich
is the major obJective of this report, the guidance equation may also
be used to determine requirements for corrective guidance.

The escape-spiral trajectory is designed so that the hyperbolic
escape asymptote is pointed in a prescribed direction relative to the
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Barth-sun line. In other words, the last spiral turn must be oriented
properly. Since the vehicle makes several hundred revolutions about the
Earth in the process of escaping, it might be expected that the escape
direction would be highly sensitive to errors. This expectation is amply
verified by the results of the sensitivity analysis. For example, a 0.1-
percent error in either the initial-orbital altitude or the initial mass,
if left uncorrected, is sufficient to reverse the direction of escape.

A minimum error of 0.1 percent in the thrust magnitude acting over the
entire trajectory will also result in a 180° misorientation. The effects
of thrust-angle errors during the escape phase are found to be nonlinear
for errors larger than a fraction of lo, so that second-order terms are
required. Results show, for example, that thrust-angle errors of 1/2o
and 2.8° acting over the entire trajectory cause the escape direction

to be in error by about 10° and 180°, respectively. Because of the

small control errors involved, specifically the thrust-magnitude error,
the vehicle must have the capability of corrective-guidance programming.

The sensitivity analysis of the heliocentric transfer phase shows
that the nature and magnitude of trajectory perturbations are not unlike
those for free-fall trajectories. The exception, of course, is that an
error in the vehicle's mass will perturb the low-thrust trajectory. An
error of 10 kilograms at the initial-trajectory state results in a final-
position error of several hundred thousand kilometers. Either a 1/20
error in the escape direction, a l-percent error in thrust magnitude, or
a 1/20 error in thrust angle, will result in final position and velocity
errors of the order of several hundred thousand kilometers and 10 meters
per second, respectively. These errors are of sufficient magnitude to
require midcourse corrective maneuvers.

The capture spiral, like the escape spiral, is highly sensitive to
errors both in the initial trajectory state and in thrust-vector control.
These two phases of the mission are essentially duals of each other. In
the escape phase, the final velocity and radial position are not too sen-
sitive to guidance errors. The important parameter is the final angular
position, which is strongly related to the escape direction. In the cap-
ture phase, however, the final angular position is of little consequence
compared with the size of the final satellite orbit. Hence, the final
velocity and radial position are the important parameters, and results
have shown these to be very sensitive. For example, if the initial-
velocity magnitude and direction were in error by only 1 meter per second
and 1 milliradian, respectively, and if the reference thrust program
were followed exactly, the vehicle would spiral down into the Martian
surface instead of establishing the nominal 927-kilometer circular orbit.
A constant-thrust-angle error of only 1 milliradian acts to decrease
the final perigee altitude by about 400 kilometers.

In sumary, the results of this analysis indicate that the low-
thrust trajectory is extremely sensitive to relatively small error



magnitudes. It should not be concluded, however, that accurate guidance
is unachievable. As the trajectory is affected by error perturbations,
it is likewise affected by controlled perturbations, that is, by correc-
cive thrust programming. The proper conclusion to be drawn from this
study is that the electrically propelled space vehicle incurs the job

of repetitive trajectory determination and corrective guidance maneuvers.

Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio, July 16, 1962



APTENDITY A

PERTURBATION ANALYSIS

The motion of the vehicle during each phase of the mission is de-
scribed by a sct of nonlinear differential equalions. Consider that a
solution of such a set corresponding to a specified thrust program and
satisfying prescribed boundary conditions has been obtained and is
termed the reference solution. If the major assumption is made that
exiraneous periturbations (e.g., guidance errors) are sufficiently small
SO that the actual vehicle trajectory does not vary significantly from
the reference trajectory, it is possible to study these variations an
the required corrective maneuvers by linear perturbation technigues.
The perturbed differential equations of motion represent a linear system
with time-varying coefficienls, which are expressed as known funciions
of position, veloecity, thrust and gravity forces, and mass along the
reference trajectory.

The following analysis shows the derivation of the linearized
system eyuations and the use of adjoint methods in obtaining the varia-
tiornal solution and expressing the fundemental guidance equation. In
the following discussion, the symbol & is used to represent small
variations from reference quantities, and matrix notation is used for
the purpose of compactness and ease in algebraic manipulation.

System Eguations

During each phase of the mission, the vehicle is assumed to travel
in a vacuum under the influence of an inverse-square central gravita-
tional field in addition to its own thrust acceleration. A two-
dimensional geometry is used, and the vehicle motion is described in a
rotating polar coordinate system centered at the appropriate central
body. With reference to figure 1, the differential egquations of motion
to be satisfied along the flight path are given as

Y = 2 _ QM + ¥
1= rw Z ' sin B (1)
. -2u F
& - w0 cos B (2)
T = (3)
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Differentiation with respect to the independent variable time 1s denoted
by a2 superscribed dot. The state variables of interest are radial
velocity w, anguilar veloclty @, radial poesition r, angular position

¢, and mass m. The propulsion or control variables are the thrust
megnitude F, and the thrust angle B, which is measured with respect

“o the local horizontal (circumferential) direction. The effeclive jJet
velocity ¢ is equal to Lhe product of speciflic impulse and a conversion
factor, and is considered constant herein.

At this point, it 1s convenient to define the following column
matrices or veciors:

x]_1 uj
Xo w Nl P
T=ix|=lrl ¥ = (A1)
Xy ¢ Jo B3
th m

and So write cquations (1) to (5) as

}.{l = gl(Xl, « e ey Xb’ yl’ yd) i = l} . e sy S <A2)

The perturbed system of equations is obtained by taking the first-order
variations of (AZ)

o

0o

] S ‘agi . agi 5 Do . (A3)
Sxi = g}z— 6)(; gj;- yu, i = y e e
" ll ) — o

which is, in matrix notation,

d .- e )
7T OX - ABX = By (A4)

where A and B are (5 by 5) and (5 by 2) coefficient matrices, respec-
tively, whose it elements arc given by Bgi/axj and agi/éyj,

respeclively; thus,
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0 2rw (—2% + w2> 0 —= sin B
r m
-2 -2u 2uw  F cos B o -F
T T 2 2 cos B
og, r m
A = 1 1 0 0 0 0 A5
5, (45)
J ¢ 1 0 0 0
0 0 o) 0 0
[sin p F cos g
m m
cos B -F sin B8
rm rm
B = ?gvi = 0 0 (48)
J 0
— 0
c —

Note that A and B are time-varying matrices evaluated along the
known reference trajectory.

Sclution by Adjoint Methods

The solution of equation (A4) can best be facilitated by the method
of adjoint functions, as suggested in reference 3, by introduction of a
S by 1 vector of Lagrangian multipliers %i, which satisfies a system

of equations defined to be adjoint to equation (A4):

agt— N oFATR =0 (A7)

where

In equation (A7,) AT is the transpose of the matrix A. The desired
relation between equations (A4) and (A7) is obtained by taking the _
scalar product of (A4) with 7j, the scalar product of (A7) with BX,

and adding the results:
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- da _-= = — - - R —
A (EE 6¥> - Ay - (MBX) + (g; hb - X + @ﬂ5g)- 5% = Ay * (BdY)
It is easily shown, however, that

2y - (ABX)

éﬂﬁg) - 5%

h v (BF) = (BTAY) - &Y

Therefore

d = — T —

— (M * ®X) = ({B"Ay) - By (a8)
Define a 2 by 1 weighting vector Wj:

Wi = = BT-Xi (Ag)
Wi2

and integrate both sides of equation (A8) between the general time t
and the nominal final time ‘Tt

t
f
Xl(tf) . 5}_('("01\) = Xi(t) . 6?{(‘[‘,) + / (-'v_fl . 6'37)dt (AlO)
t

Equation (A10) expresses a linear function of variations in final
conditions in terms of variations in state variables at any point along
the path and the integrated effect of future thrust variations over the
path. For the purpose of analysis 1t is desirable to separate the effect
of variations on each quantity individuaelly. This is possible by a
proper interpretation of the boundary conditions on the Lagrangian multi-
pliers. For example, let the variation 5x; be of interest at the final

time te. If the following boundary conditions at tg are specified,
NMilte) = 15 Mjlte) = O for j# 1 (A11)
the adjoint equations (A7) can be integrated backward from tf 10 yield

numerical values for the multipliers at each time instant t. The varia-
tion of interest is then given explicitly from (Al0):
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axi(te) = A(t) « 8%(t) +.//. (w3 - 8y)ds (A12)
t

If this procedure is followed for i =1, . . ., 5, the complete solution

for the variations in final-state variables may be expressed in the
macrix form

"
vt
8%(te) = A(L)BX(t) + J/~ (WaF)dt (A13)
t
where the rows of A and W are made up of the elements of A and
Wi, respectively:
- - _ _ - - -
AL M1 Me - - M5 | [ v
7\21 - a - )\\25
A= = 3 W= = (7)
Ps o [Ms1 M5 | L"s] LYs1 sz,

Because of the form of eguation (7), the elements of A can be inter-
preted as partial derivatives or sensitivity coe ficients; thus,

) Bxi(tf) i=1, .. .,5

Mylt) = F T . (a14)
J=1, « . ., 5
Now that the general results have been established with the help of
matrix notation, it would be well to write out ecuations (A7) and (A9)
in terms of the variables of interest in this study. The set of adjoint
equations is determined from (A7) and (A5):

2w
A1 = (;r) Mz - M3 (8)
« feaM 2 /2uw T cos B
Az = - <r5 +-a>>xil - (rz - )xig (10)
Na =0 (11)



The weighting functions are found from (A9) and (A6):

Nonlinear Thrust-Vector Perturbations

The previous results were derived with consideration given only to
first-order variations in the state variables and the thrust vector.
It is possible that relatively large variations 1n thrust magnitude and
direction will oceur in such a way that the deviation between actual
and reference trajectories still remains smallj; that is, the lineariza-
tion of state varisbles ig still valid. The integrand in eguation (A13)
must be modified from its linear form to account for this situation.

When exact variaticns in thrust magnitude and direction (AF  and
AB) are considered, the right side of equation (A4) becomes

- -
EL%%QE gin {p + AB) - % sin B
F +
(——r—m—A—F—)cos (8 + AB) —%cos 8
Boy - 0

Correspondingly, from the definition of equation (A9), the integrand
term of equation (Al12) becomes

A,
ST 63—')—>fi=%[(F + AF) sin (B + AB) - F sin gl

A N
+512- (F + AF) cos (8 +AB) - F cos B) —155— [(F + AF) - F]
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Bquation (Al3) then becomes

e
8% (ty) = A(t)oX(t) + / (fi)dt
t

(18)
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APPENDIX B

FRROR TRANSFORMATION BETWEEN ESCAPE AND
HELIOCENTRIC MISSION PHASES

The relations between final escape errors and initial heliocentric
errors are presented. The Farth-referenced velocity and position com-
ponents at the termination of the escape phase are denoted as upy,

Wy Tpyo and Qg and the sun-referenced components at the initiation
of the heliocentric phase as Ugs, ®pz, o2 and Qg2 - Only first-
order variations in Upy, ®p7, and rgp are considered; however, large

variations in @g] are to be allowed.

Position Errors

_ The geometric configuration of the Farth-centered reference position
re and the actual position rpp + 0Tpp is shown in the following

sketch. The coordinate frame has i, as a unit vector away from the
sun, and :'L(P as a unit vector in the direction of Earth's orbital

velocity.

V1 + 5V

Brpp

o

\_Earth
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The quantities by and 51 are components of the rcference-position

vector. Since 1t has been arbitrarily assumed that the hyperbolic
escape direction is parallel +o i@, the asymptotic displacement of the

escupe hyperbole is represented by by -
The heliocentric position of the vehicle at time Lty is
Toz = Tg t Tpy
so that

BToz = BTe1 = (Brpp)Ty + (rgebppz)T,

The components of 6?62, which may easily be found from the sketch, are

given by

b
1 - .
51'02 = E E'fl(gog /_\(Pfl - l) + Ccos L{pflorfl] - 81 s1n A{Pfl (Bl)
51
T02%%0z2 = Top [rg1(c0s fpgy - 1) + cos 18Ty | by sin Appy
(B2)
where
T o O
11
bl = r'yy V——— (BB)
1
s, =7 (Eii) (B4)
1 1 Vfl '
- o + 5
Top X Ty T by (B5)
If Nppy  is very small (A@fl - 6@f), egquations (Bl) and (BZ) are
approximated by
by
broz =\ 1) Orr1 - (s1)B0n (86)

. Y S N -
nedPoz = (rfl> orpy * (bg)89p (B7)



Positive App; 18 measured counterclockwisc, so Appy is @ negative

angle, as indicated by the sketch.

Velocity Errors

The heliocentric velocity of the vehicle at time ty] 18

Voz = Vg t V1

so that
V. =8V, = T+ I
8V, = 8V = (Bugy)i, 6(Toz““’oz)lcp
where
8(rgps®s) = 2%z T “0z%%0z

The magnitude of 8Vfl may be found as follows:

2 2 2
Ve = ufq + (rpop)

2 ?
uf] T T 19r]
= |=—= + [ == T
&Vep <Yf%> dupq ( Voo Blbpy Ve 8rpq

2
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or from (B3) and (B4) r (B8)

s biw

1 1%71

&§Vor = [——| Bum + (D Yowe F ) Br

£1 <ff1> 1 1/0%r1 < T 1 )

The angle between the velocity vector and the Earth-centered local
horizontal is denoted by v in the sketch. The variation in this angle

may be expressed 1n terms of Bdupy, dWf7> and ©®re; as follows:

ufl
tan ¥ = ——
rE1®F]
‘ 1 ] ufrl
oYy = cosar —— ] DUy - —|owp - [ orey
T ®ry T wz rz w
171 171
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since
r1@p1
cos ¥ = v
f1
T urirel uf Oy
&Y = <V2 ) dupg - (VZ e (VZ ) orey (B9)
1 f1 £1

Now, the directional variation between Vfl and vfl + SVfl is in part
due to dy and in part due to Npeq . Specifically, the angle between
the latter vector and T@ i1s ®Y - App; measured counterclockwise

positive from Vfl + SVfl. Now the heliocentric components of vil

may be expressed as
Buge = (Vg1 + BV )sin(ey - Appy)
B(rogop) = (Voy +8Vy Jeos(er - ap.) - Vg

Since 8Vg) < Vey and By 1is very small, the following approximations
are valid:

Bugz = Vp1®Y cos Mpg - Vey sin Appy
B(rgsage) = Ve (cos Nppp = 1) + 8Vp cos OAppy + Ve8Y sin Appyy

With the use of equations (B3), (B4), (B8), and (B9), the previous
expressions become

N [ (s1) B1®r1 Voo s
Ovoz = \ Ty ) Pue1 T (S1080py - \ =) Brey | 08 Apgy - Vg sin Appy
(B10)

1 .
&(ropupz) = Top (51 008 &g + by sin M9y Joup
+ (bl cos Amfl - s sin Amfl)ﬁwfl

w
fl .
+ E‘I (bl cos Appy - 81 sin Acpfl)ﬁrfl + Vfl(cos Npgp - l) (Bll)
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If Nppy is very small ey = 8Ppp s equations (B10O) and (Bll)

become

s = (oL 5 (s4)5 i 1 PN (Ve ) (B12)
Yo = Tl Upp - \81/0Wp1 - Tp1 rep = Wyp1/09p1

8(rgotpz) = 8Vep (B13)

The variation &wgz is found from (B6) and (B8)

81 by
dupp = dupy - | 7 )0%r1
(rferZ To2

b s
1 ©o281
+ (Wno =~ Weq )BTy + | ———| 80 (B14)
TeiTop | 02 £1/°7f1 ( Too ) fl
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(f) Sensitivity of final radial position to thrust-
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Figure 11. - Concluded. Thrust-vector weighting
functions for capture-spiral phase.

60



79

3.2 [ R AU R
l/ —’-
~
7
7
yd Uncorrected
2.8 characteristic,
/ t
oF f wyqp At
/ (o}
w0
£ 2.4 £
— /
B /
&~ 7
> /
g 2.0 /
- ‘/
2 /
=
5 /
g: 1.6 1 Thrust impulse,
BE / OF At (newtons) (sec)
3 -£.08x10°
0
S5
8 1.2
~
% /
H
2 .8 /
-~
/ -5.70
. / / /
/ / / -6.65
/ s
L~ -8.34
0 20 40 g0 80 100 120 140
Time, t, days
(a) Final-angular-position characteristic.
Figure 12. - Simulated escape guldance maneuver; thrust-magnitude

perturbation, 8F, 2.32x10-° newton.
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Final-radial-velocity error, &u., m/sec
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(b) Final-radial-velocity characteristic.
Figure 12. - Continued. Simulated escape guidance maneuver; thrust-

magnitude perturbation, &F, 2.32x10-3 newton.
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Figure 12. - Continusd. Similated escape guidance maneuver; thrust-

magnitude perturbation, &F, 2.32x107~ newton.
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Final-radial-position error, ere, m
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Figure 12. - Concluded. Simulated escape guidance maneuver; thrust-
magnitude perturbation, B&F, 2.32x107% newton.
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